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Concept of a Dynamic Bulk Modulus employed as descriptive models for reducing ex-

In almost all dynamical treatments of fluid perimental data. However, for a long period

flow, a static relationship between the fluid now, it has been Pecognized how arbitrary these

density and the fluid pressure is assumed. For idealizations have been; such awareness has be-

liquids, this relationship is usually expressed come particularly acute since the advent of gen-

in terms of the fluid bulk modulus, K, as mani- eralized continuum mechanics and rheology (1, 2,

fested by: 1).I

We shall here consider only the next approx-
e =( ) dP 14P (1) imation beyond the classical; namely, that with

a0, al, b0 , bl non-zero, and with all the rest

where of the ak and bk assumed vanishingly small. The

V = fluid density, lb-sec2/ft4 coefficient a1 is directly related to what has

P = fluid pressure, psf been termed the second coefficient of viscosity

K = fluid bulk modulus, psf (4, •)
On this relationship nearly all classical There is ample physical evidence to assume

developments for wave propagation in slightly that there exists a time lag between the appli-

compressible fluids have been based. It is the cation of pressure and the resulting change in

primary aim of this paper to assume a more gener- density. Using finite incremental changes this

al dynamical relationship between pressure and phenomenon might be expressed mathematically in

density and then cursorily to examine the result- the assumed form:

ing effects on fluid phenomena such as acoustic
wave propagation. _e I 1+ 1/k. AP- I aTD÷Il(4From a general macroscopic and phenomenolog- e -K1 7--i K

ical standpoint, it is not a priori reasonable where

to assume such a purely static relationship be- t= retardation time, sec

tween pressure changes AF, and density changes, D = d/dt = differential operation, sec- 1

A' , of a fluid under dynamic conditions. Rather, 1/K = (I/Kl) + (1/K 2 ) reciprocal bulk modulus

it is moie reasonable initially to assume a more sq ft per lb

complete (albeit linear) form such as t•c = (l/K 1 )/(l/K) a nondimensional ratio,

generally less than unity
a.p + a,,& + azAe + -. b.AP + b,,1AP + bAP+... Consequently a conjectural dynamic or an-

(2) elastic bulk modulus (which is identical to the

where the dots indicate time derivatives and the static bulk modulus in the steady state) can

coefficients are in general undertermined. This thus be defined:

relationship also may be indicated in the equiva-

lent operational for'ms: •'. • P i< + (

' (X akpk)eZo=( k 1Pk) '1 To illustrate the physical significance of
(3) the dynamic bulk modulus, Fig. I demonstrates howI or 2 AP the density, P, or the pressure, P. of a fluidL Zwould vary with time due to the application of

step change in either quantity.

with D = d/dt denoting the differential operator.

Historically, only the very simplest of the

infinitude of possibilities for Equation (2) U:derlined numbers in parentheses designate
have been considered analytically or have been References at end of paper.
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-T- Fig.2 Model analogies for a fluid element having
- a dynamic bulk modulus.

".C = fluid capacitance per ft of pipe, ft

t = timesec
b Equations (6) and (7) can be written in a

(b) Step chernpressun more general form in terms of an impedance and

Fig.1 Illustration of the dynamic bulk admittance operator that relate the relationships

modulus, between pressure and flow as stated in Equations
(8) and (9) for which Equations (6) and (7) are
merely special forms.

Effect on Wave Equations:
The concept of a dynamic bulk modulus can l (D z (8)

now be utilized to modify the evaluation of ef- -- v 8

fective fluid capacitance in the derivation of aw
the wave equations. For the purpose of compari- -(9 -()

son between the pure wave propagation along a

pipe and the dispersive propagation involving a Having written these expressions, the propa-

dynamic modulus, corresponding variables, equa- gation operator and the characteristic impedance

tions, and model analogies for the two types will Z0 for a fluid column can now be derived for the

be carried in a parallel fashion as follows: dispersive case in a similar manner to what is
usually done for the lossless case. Again for

sethe purpose of comparison, corresponding relation.

Momentums - I w (6a) ships will be written for the two cases:

Pure Wave Propagation

Eimpedance')
per unt • • D (ba.)

Dls~eaivelengthJ
Dispersive(1a

bp bW (b
Y(Sb) Admittancey)

per unit y ) D (11a)

W C7length

Propagation e e f-C P

where, in addition to the variables previously Operator T r rK (12a)

defined:
s = distance along the pipe, ft Characteristic Z' V7

W = weight rate of flow, lb per sec 21 3a)pedance |. g (-

I = fluid inertance per ft of pipe, sec 2 /ft 3  pa
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TIME (a)

Fig.3 Impulse response for an infinite f
.20

FOR~ -6.33

Dispersive Propagation

PoIX V 5.3

) P (lob) .10 1

Y p)Cl 'Pc D (I Ib) 14 10 45 20 2!ý-

(12b X1.90 15.S

(13b) ._0

where . = total column length, ft; T = wave trav- -_5

el time along the column, sec. The transfer op-
erator for a pipe also may be written in a gen- -

eralized matrix form: ( c0 ,5 ) 0 ts so(C)

(14) Fig.4 Calculated response curves. (a)

s r sink1 Impulse response OC= 1.90; (b) Impulse
Sresponse',.= 6.33, 15.3; (c) step re-

sj, r I sk r sponses.

where subscripts 1 and 2 denote upstream
and downstream conditions, respectively, the shape of this impulse at any point can be

approximated by certain distribution functions

The solution to Relation (14) may be obtained for as it travels along the column.
a given set of conditions and fluid terminations. Since if such a semi-infinite column the

However, because of the complexity of F' and Z0 pressure at any point is given by:
the general solution cannot be expressed in a
simple closed form as in the case of pure wave P(St') - e P (Ot) (15)
propagation. There are several methods however
for approximating the solution for a specific
set of conditions.

(16)
Propagation of a Pressure Impulse in a Semi-
Infinite Column which is true for the casu in question. Follow-

For example, if a pressure impulse is ap- ing the methods of one of the authors (6-, 7),
Plied at one end of a semi-infinite fluid column, the operator c -P may be expanded as follows:
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-r -~ Elementary Introduction to Theoretical Rheology,"

e = - (17) H.K. Lewis, London, 1949.
4 Tisza, Physical Review, vol. 61, 1942,

pp. 531-536.
- b (18) 5 "A Discussion in the First and Second

Viscosities of Fluids," Proc. Royal Society,

T-v+-1 T Z 'D --... ISeries A, vol. 226, 1954, pp 1-69.
-X- (19) 6 H. M. Paynter, "On an Analogy Between

Stochastic Processed and Monotone Dynamic Sys-

In Equation (17) the time constants have the tems," in Regelungstechnik: Moderne Theorien

subsequent significance und ihre Verwendbarkeit, R. Oldenbourg, Munich,

Tm = T = mean delay, sec 1957.

Ts =[(l--()T- 3l/2=dispersion time, sec 7 H. M. Paynter and Y. Takahashi, "A New
Method of Evaluating Dynamic Response of Coun-

Hanin (j) and Vaughn (8) have demonstrated terflow and Parallel-Flow Heat Exchangers,"

for the case , = 0 that an impulse at the ori- Trans ASME, May, 1956, PP. 749-758.

gin gets increasingly dispersed and attenuated 8 M. Hanin, "Propagation of an Aperiodic

as it propagates. Following suggestions of the Wave in a Compressible Viscous Medium," Journal

present authors, Vaughn showed that its shape of Mathematics and Physics, October, 1957, PP.

can be predicted accurately by the delayed chi- 234-249.

square distribution function (II) and that the 9 D. R. Vaughn, "Firmoviscous Transmission

limiting form for very early development can be Lines," M. I. T. thesis (unpublished), May 1958.

predicted by the complementary error function 10 Burington and May, "Probability and

(I). For large intervals of time the pulse ap- Statistics," Handbook Publishers, Inc., Sandusky,

proaches the normal distribution function (III). Ohio, 1953.
Figs. 3 and 4 illustrate these shapes

graphically, while the Appendix presents the cor- APPENDIX

responding mathematical formulas, for the impulse

and step response of a semi-infinite fluid medi- Derivation of Dynamic Response Equations
11m. Purely Firmoviscous Propagation (-'. = 0).

However, the two derived constants, Tm and For this case it is possible to simplify analy-

Ts, adequately define behavior for all types of sis by first normalizing, or nondimensionaliz-

disturbances and boundary conditions. This fact ing, all variables and parameters through intro-

permits determination of the fluid properties ducing into Equation (15) the substitutions:

from any adequate and consistent observational

data. NORMALIZED DISTANCE: •( (T/T)

NORMALIZED TIME: = ('4) " (A)

Conclusions

All experimental data known to the authors NORMALIZED DERIVATIVE:o (t )
reinforce the belief that such a compressive Thus we may now treat the generalized operator:

model as that proposed in the foregoing is of
the minimum complexity which will still explain -,r-CjD/V-v

the scattering action readily apparent in ob-
served behavior of fluids. Thus we strongly

urge that a concerted effort be made to reduce The condition -0' QO corresponds to

such observations to the point where the anelas- the instantaneous response, t - 0, and yields:

tic properties of the more common fluids can be t -F

established firmly. 0 k, _(,/ M =F -"(1)E C - ( " (B)

References lThis operator applied to a unit impulse or
unit step results in the consequent impulse re-1 F. R. Eirich, "Rheology: Theory andI F.R. irih, Rheoogy Thoryandsponse and step response, in the form:

Applications," 2 vols. Academic Press, New York,

1956-58. Houwink, "Elasticity, Plasticity and IMPULSERESPONSE: E.(x,7) =

Structure of Matter," University Press, (.)

Cambridge, 1937. (X,9-) -
3 M. Reiner, "Deformation and Flow: An STEP RESPONSE: = 1 ef ('/V )
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Tables of the functions indicated are readi- Between these two extremes many models would

ly available in standard handbooks, such as that be possible. That used by Vaughan (2), as men-
of Burington and May (10). tioned earlier, is a "delayed chi-square distri-

For the opposite conditions, when the dis- bution," which is an approximation in the form:

turbance has traveled a great distance from the
origin, then t-t c, 0- 0, and we may consider Fv" _ -(0c,) e C , TO T0- /2 (F)

the limiting operator:

&m'. IF (0y,.9) = (•) e-J+ (D) with TI, T 2 , normalized time constants and m the

0Ao -I number of degrees of freedom of the chi-square

distribution. An excellent fit is obtained by

corresponding to the impulse and step responses: matching the first three impulse moments, which

IMUS yields the conditions:

IM P LS E R ES O NS : /9 ) 9 0 . 1 1 1 ' X (G )(E) = =/ 1.125

STEP RESPONSE: Vo (-,8/-)=1 f& d)C = = ,.5ao

Thus these results correspond to the well-known The corresponding values of impulse response,

Gaussian distributlon o. normal probability dis- fl/m, and step response Fl/m, are readily found

tribution, with mean = variance = X. This func- from any of the available tables of the ohi-

tion is tabulated in many handbooks, such as square distribution such as those previously
that previously cited (10). cited (10).
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